131 research outputs found

    Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Morphine consumption can vary widely between individuals even for identical surgical procedures. As mu-opioid receptor (OPRM1) is known to modulate pain perception and mediate the analgesic effects of opioid compounds in the central nervous system, we examined the influence of two OPRM polymorphisms on acute post-operative pain and morphine usage in women undergoing elective caesarean delivery.</p> <p>Results</p> <p>Data on self-reported pain scores and amount of total morphine use according to patient-controlled analgesia were collected from 994 women from the three main ethnic groups in Singapore. We found statistically significant association of the OPRM 118A>G with self-administered morphine during the first 24-hour postoperative period both in terms of total morphine (p = 1.7 × 10<sup>-5</sup>) and weight-adjusted morphine (p = 6.6 × 10<sup>-5</sup>). There was also significant association of this OPRM variant and time-averaged self-rated pain scores (p = 0.024). OPRM 118G homozygotes used more morphine and reported higher pain scores than 118A carriers. Other factors which influenced pain score and morphine usage include ethnicity, age and paying class.</p> <p>Conclusion</p> <p>Our results suggest that ethnicity and OPRM 118A>G genotype are independent and significant contributors to variation in pain perception and postoperative morphine use in patients undergoing cesarean delivery.</p

    Are C-Reactive Protein Associated Genetic Variants Associated with Serum Levels and Retinal Markers of Microvascular Pathology in Asian Populations from Singapore?

    Get PDF
    Introduction:C-reactive protein (CRP) levels are associated with cardiovascular disease and systemic inflammation. We assessed whether CRP-associated loci were associated with serum CRP and retinal markers of microvascular disease, in Asian populations.Methods:Genome-wide association analysis (GWAS) for serum CRP was performed in East-Asian Chinese (N = 2,434) and Malays (N = 2,542) and South-Asian Indians (N = 2,538) from Singapore. Leveraging on GWAS data, we assessed, in silico, association levels among the Singaporean datasets for 22 recently identified CRP-associated loci. At loci where directional inconsistencies were observed, quantification of inter-ethnic linkage disequilibrium (LD) difference was determined. Next, we assessed association for a variant at CRP and retinal vessel traits [central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE)] in a total of 24,132 subjects of East-Asian, South-Asian and European ancestry.Results:Serum CRP was associated with SNPs in/near APOE, CRP, HNF1A and LEPR (p-values ≤4.7×10-8) after meta-analysis of Singaporean populations. Using a candidate-SNP approach, we further replicated SNPs at 4 additional loci that had been recently identified to be associated with serum CRP (IL6R, GCKR, IL6 and IL1F10) (p-values ≤0.009), in the Singaporean datasets. SNPs from these 8 loci explained 4.05% of variance in serum CRP. Two SNPs (rs2847281 and rs6901250) were detected to be significant (p-value ≤0.036) but with opposite effect directions in the Singaporean populations as compared to original European studies. At these loci we did not detect significant inter-population LD differences. We further did not observe a significant association between CRP variant and CRVE or CRAE levels after meta-analysis of all Singaporean and European datasets (p-value >0.058).Conclusions:Common variants associated with serum CRP, first detected in primarily European studies, are also associated with CRP levels in East-Asian and South-Asian populations. We did not find a causal link between CRP and retinal measures of microvascular disease

    Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese: The Singapore Chinese health study

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified genetic factors in type 2 diabetes (T2D), mostly among individuals of European ancestry. We tested whether previously identified T2D-associated single nucleotide polymorphisms (SNPs) replicate and whether SNPs in regions near known T2D SNPs were associated with T2D within the Singapore Chinese Health Study. Methods: 2338 cases and 2339 T2D controls from the Singapore Chinese Health Study were genotyped for 507,509 SNPs. Imputation extended the genotyped SNPs to 7,514,461 with high estimated certainty (r2>0.8). Replication of known index SNP associations in T2D was attempted. Risk scores were computed as the sum of index risk alleles. SNPs in regions ±100 kb around each index were tested for associations with T2D in conditional fine-mapping analysis. Results: Of 69 index SNPs, 20 were genotyped directly and genotypes at 35 others were well imputed. Among the 55 SNPs with data, disease associations were replicated (at p<0.05) for 15 SNPs, while 32 more were directionally consistent with previous reports. Risk score was a significant predictor with a 2.03 fold higher risk CI (1.69-2.44) of T2D comparing the highest to lowest quintile of risk allele burden (p = 5.72×10-14). Two improved SNPs around index rs10923931 and 5 new candidate SNPs around indices rs10965250 and rs1111875 passed simple Bonferroni corrections for significance in conditional analysis. Nonetheless, only a small fraction (2.3% on the disease liability scale) of T2D burden in Singapore is explained by these SNPs. Conclusions: While diabetes risk in Singapore Chinese involves genetic variants, most disease risk remains unexplained. Further genetic work is ongoing in the Singapore Chinese population to identify unique common variants not already seen in earlier studies. However rapid increases in T2D risk have occurred in recent decades in this population, indicating that dynamic environmental influences and possibly gene by environment interactions complicate the genetic architecture of this disease. © 2014 Chen et al

    Genome-Wide Meta-Analysis of Five Asian Cohorts Identifies PDGFRA as a Susceptibility Locus for Corneal Astigmatism

    Get PDF
    Corneal astigmatism refers to refractive abnormalities and irregularities in the curvature of the cornea, and this interferes with light being accurately focused at a single point in the eye. This ametropic condition is highly prevalent, influences visual acuity, and is a highly heritable trait. There is currently a paucity of research in the genetic etiology of corneal astigmatism. Here we report the results from five genome-wide association studies of corneal astigmatism across three Asian populations, with an initial discovery set of 4,254 Chinese and Malay individuals consisting of 2,249 cases and 2,005 controls. Replication was obtained from three surveys comprising of 2,139 Indians, an additional 929 Chinese children, and an independent 397 Chinese family trios. Variants in PDGFRA on chromosome 4q12 (lead SNP: rs7677751, allelic odds ratio = 1.26 (95% CI: 1.16–1.36), Pmeta = 7.87×10−9) were identified to be significantly associated with corneal astigmatism, exhibiting consistent effect sizes across all five cohorts. This highlights the potential role of variants in PDGFRA in the genetic etiology of corneal astigmatism across diverse Asian populations

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg-0.22, P =5.5x10-13), T2D (rg-0.27, P =1.1x10-6) and coronary artery disease (rg-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated

    Genetic Variants on Chromosome 1q41 Influence Ocular Axial Length and High Myopia

    Get PDF
    As one of the leading causes of visual impairment and blindness, myopia poses a significant public health burden in Asia. The primary determinant of myopia is an elongated ocular axial length (AL). Here we report a meta-analysis of three genome-wide association studies on AL conducted in 1,860 Chinese adults, 929 Chinese children, and 2,155 Malay adults. We identified a genetic locus on chromosome 1q41 harboring the zinc-finger 11B pseudogene ZC3H11B showing genome-wide significant association with AL variation (rs4373767, β = −0.16 mm per minor allele, Pmeta = 2.69×10−10). The minor C allele of rs4373767 was also observed to significantly associate with decreased susceptibility to high myopia (per-allele odds ratio (OR) = 0.75, 95% CI: 0.68–0.84, Pmeta = 4.38×10−7) in 1,118 highly myopic cases and 5,433 controls. ZC3H11B and two neighboring genes SLC30A10 and LYPLAL1 were expressed in the human neural retina, retinal pigment epithelium, and sclera. In an experimental myopia mouse model, we observed significant alterations to gene and protein expression in the retina and sclera of the unilateral induced myopic eyes for the murine genes ZC3H11A, SLC30A10, and LYPLAL1. This supports the likely role of genetic variants at chromosome 1q41 in influencing AL variation and high myopia
    corecore